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Abstract 
 
The transmission of sound waves in an expansion chamber with extended inlet/outlet is investigated in 

the case the walls of the expansion chamber and the extended inlet/outlet are lined with different 

acoustically absorbent materials which are characterized mathematically by impedance boundary 

conditions. By using series expansions in extended inlet/outlet regions and using Fourier transform 

technique elsewhere we obtain a Wiener-Hopf equation whose solution involve a set of infinitely many 

unknown expansion coefficients satisfying a system of linear algebraic equations. Coupling series 

expansions and the field representations results with a solution involving infinite series. The solution 

of the algebraic system and the W-H equation is obtained numerically by truncating the infinite series 

at some number N and then the variation of transmission coefficient for different values of problem 

parameters are displayed graphically.   
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1. Introduction  

 

Expansion chambers are one of the ways to reduce the unwanted noise propagating along a duct 

which can be a part of an exhaust or a ventilating system. Simple expansion chambers has been 

widely investigated in literature [1], [2], [3], [4]. In further investigations it has been shown that 

expansion chambers with extended inlet and outlet exhibit a desirable acoustic attenuation 

performance [5], [6], [7]. In [7], Selamet et al. concluded that it is possible to obtain excellent 

acoustic attenuation by choosing the length of extended ducts to match the resonances with the 

zero-attenuation frequencies of expansion chambers.   

Another way to reduce the unwanted noise is to treat duct walls with acoustically absorbent 

linings which has been shown to be very effective in [8]. Rawlins found that the rate of acoustic 

attenuation depend on the specific impedance of the absorbent lining. Combining the two 

effective approaches, expansion chamber and absorbent lining, in a silencer consist of an 

expansion chamber whose walls are treated by acoustic liners has been analysed in [9]. 

Recently, sound transmission in a duct with an area expansion and extended inlet is investigated 

in [10], [11]. It has been shown that extension length and acoustic lining were both effective to 

control the transmitted field in the duct. 

In this paper, the transmission of sound in an expansion chamber with extended inlet and outlet, 

where the lateral wall of expansion chamber and the outer walls of extended inlet/outlet are 

treated by different locally reacting lining, is investigated. The main objective of this paper is to 

reveal the influence of the absorbent lining on the transmitted field propagating in an expansion 

chamber with extended inlet/outlet. The method adopted in this paper is similar to one in [11] and 

consists of expanding the fields in the overlap regions into a series of eigenfunctions and using 
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the Fourier transform technique elsewhere. The problem is then reduced directly into a Wiener-

Hopf equation whose solution involve a set of infinitely many unknown expansion coefficients 

satisfying a system of linear algebraic equations. Numerical solution to these systems are 

obtained for various values of the parameters of the problem such as extended inlet/outlet lengths 

and the specific impedance of the linings whereby the effects of these parameters on the 

transmitted field are presented graphically. 

The time dependence is assumed to be 𝑒−𝑖𝜔𝑡 with 𝜔 being the angular frequency and suppressed 

throughout this paper.  

 

2. Formulation 

 

Consider an infinite circular cylindrical duct splitted into two semi-infinite parts and a finite 

expansion chamber of different radii with common longitudinal axis, say z, in a cylindrical polar 

coordinate system (𝜌, 𝜑, 𝑧). They occupy the regions 𝜌 = 𝑎; 𝑧 < 0 ∪ 𝜌 = 𝑎; 𝑧 > 𝑙 and ρ = b > a; 

−𝑙1 < 𝑧 < 𝑙2 ; respectively. 𝑙 > 0 represents the gap length between semi-infinite parts of the 

central duct, while 𝑙1 > 0, 𝑙2 > 0 are extended inlet/outlet lengths respectively. Infinite duct and 

expansion chamber are connected with vertical walls at 𝑧 = −𝑙1 and 𝑧 = 𝑙2. Outer parts of the 

extended inlet/outlet surfaces 𝜌 = 𝑎 + 0 ; −𝑙1 < 𝑧 < 0 and 𝜌 = 𝑎 + 0 ; 0 < 𝑧 < 𝑙2 and the lateral 

inner surface of the expansion chamber 𝜌 = 𝑏 − 0 ; −𝑙1 < 𝑧 < 𝑙2 are assumed to be treated by 

acoustically absorbing linings which are characterized by constant but different surface 

impedances respectively, while the remaining surfaces are perfectly rigid (see Fig. 1). The 

waveguides are immersed in the inviscid and compressible stationary fluid of density 𝜌0 and 

sound speed c. A plane sound wave is incident from the positive z-direction, through the 

waveguide of radius ρ = a. From the symmetry of the geometry of the problem and the incident 

field the scattering field everywhere will be independent of the 𝜑 coordinate. We shall therefore 

introduce a scalar potential 𝑢(𝜌, 𝑧) which defines the acoustic pressure and velocity by 𝑝 =
𝑖𝜔𝜌0𝑢 and v = grad u, respectively. 

 
Figure 1. Geometry of the problem 

 

 

It is convenient to write the total field in different regions as: 

 

      𝑢𝑇(𝑟, 𝑧) =     

{
 

 
𝑢1(𝜌, 𝑧) + 𝑢

𝑖(𝜌, 𝑧)           ,            𝜌 < 𝑎, 𝑧 ∈ (−∞,∞)

𝑢2(𝜌, 𝑧)                               ,          𝑎 < 𝜌 < 𝑏, 𝑧 ∈ (0, 𝑙)

𝑢3(𝜌, 𝑧)                               ,    𝑎 < 𝜌 < 𝑏, 𝑧 ∈ (−𝑙1, 0) 

𝑢4(𝜌, 𝑧)                               ,        𝑎 < 𝜌 < 𝑏, 𝑧 ∈ (𝑙, 𝑙2) 

                       (1)   



 

A. DEMIR / ISITES2017 Baku - Azerbaijan  1552  

 

 

 

where 𝑢𝑖 is the incident field and defined as, 

 

𝑢𝑖(𝜌, 𝑧) = 𝑒𝑖𝑘𝑧                                                                              (2)                                                                                                                               
 

with 𝑘 = 𝜔/𝑐 being the wave number. For the sake of analytical convenience we will assume 

that the surrounding medium is slightly lossy and k has a small positive imaginary part. The 

lossless case can be obtained by letting  Im(𝑘) → 0 at the end of the analysis. 

 

The unknown scalar potentials 𝑢𝑗(𝜌, 𝑧)  ( 𝑗 = 1,2,3,4) satisfy the Helmholtz equation in their 

respective regions for  𝑧.  

 

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) +

∂2

∂z2
+ 𝑘2] 𝑢1,2,3,4(𝜌, 𝑧) = 0                                                (3)                                                                                           

 

together with the boundary conditions and continuity equations: 
𝜕

𝜕𝜌
𝑢1(𝑎, 𝑧) = 0   ,      𝑧 < 0 ∪  𝑧 > 𝑙                                           (4) 

[𝑖𝑘𝜂2 −
𝜕

𝜕𝜌
] 𝑢2(𝑏, 𝑧) = 0   , 0 < 𝑧 < 𝑙                                                (5) 

 
𝜕

𝜕𝑧
𝑢3(𝜌, −𝑙2) = 0   , 𝑎 < 𝜌 < 𝑏                                               (6) 

[𝑖𝑘𝜂1 +
𝜕

𝜕𝜌
] 𝑢3(𝑎, 𝑧) = 0   , −𝑙1 < 𝑧 < 0                                           (7) 

[𝑖𝑘𝜂2 −
𝜕

𝜕𝜌
] 𝑢3(𝑏, 𝑧) = 0   , −𝑙1 < 𝑧 < 0                                           (8) 

[𝑖𝑘𝜂1 +
𝜕

𝜕𝜌
] 𝑢4(𝑎, 𝑧) = 0   ,            𝑙 < 𝑧 < 𝑙2                                            (9) 

[𝑖𝑘𝜂2 −
𝜕

𝜕𝜌
]𝑢4(𝑏, 𝑧) = 0   ,            𝑙 < 𝑧 < 𝑙2                                          (10) 

𝜕

𝜕𝑧
𝑢2(𝜌, 0) −

𝜕

𝜕𝑧
𝑢3(𝜌, 0) = 0   ,          𝑎 < 𝜌 < 𝑏                                            (11) 

𝑢2(𝜌, 0) − 𝑢3(𝜌, 0) = 0   ,          𝑎 < 𝜌 < 𝑏                                            (12) 

𝜕

𝜕𝑧
𝑢2(𝜌, 𝑙) −

𝜕

𝜕𝑧
𝑢4(𝜌, 𝑙) = 0   ,          𝑎 < 𝜌 < 𝑏                                            (13) 

𝑢2(𝜌, 𝑙) − 𝑢4(𝜌, 𝑙) = 0   ,          𝑎 < 𝜌 < 𝑏                                            (14) 
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𝜕

𝜕𝜌
[𝑢1(𝑎, 𝑧) + 𝑢

𝑖(𝑎, 𝑧)] −
𝜕

𝜕𝜌
𝑢2(𝑎, 𝑧) = 0   ,           0 < 𝑧 < 𝑙                                             (15) 

𝑢1(𝑎, 𝑧) + 𝑢
𝑖(𝑎, 𝑧) − 𝑢2(𝑎, 𝑧) = 0   ,           0 < 𝑧 < 𝑙                                             (16) 

The above mixed boundary value problem will be solved mainly by using Fourier transform 

technique together with series expansion of unknown fields in extended inlet/outlet regions. 

2.1. Fourier transformation  

 

Consider the Fourier transform of the Helmholtz equation in the region ρ < a for z  (-,), 

namely, 

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) + (𝑘2 − 𝛼2)] 𝐹(𝜌, 𝛼) = 0                                                (17) 

where 𝐹(𝜌, 𝛼) is the Fourier transform of the field 𝑢1(𝜌, 𝑧) defined to be 

𝐹(𝜌, 𝛼) = ∫ 𝑢1(𝜌, 𝑧)𝑒
𝑖𝛼𝑧𝑑𝑧

∞

−∞

= 𝐹−(𝜌, 𝛼) + 𝐹1(𝜌, 𝛼) + 𝑒
𝑖𝛼𝑙𝐹+(𝜌, 𝛼)                               (18) 

While 𝐹±(𝜌, 𝛼) are half-plane analytical functions 𝐹1(𝜌, 𝛼) is an entire function on complex -plane 

defined by Fourier integrals as: 

𝐹+(𝜌, 𝛼) = ∫ 𝑢1(𝑟, 𝑧)𝑒
𝑖𝛼(𝑧−𝑙)𝑑𝑧

∞

𝑙

, 𝐹−(𝜌, 𝛼) = ∫𝑢1(𝑟, 𝑧)𝑒
𝑖𝛼𝑧𝑑𝑧

0

−∞

, 𝐹1(𝜌, 𝛼) = ∫𝑢1(𝑟, 𝑧)𝑒
𝑖𝛼𝑧𝑑𝑧

𝑙

0

       (19) 

Owing to the analytical properties of 𝐹±(𝜌, 𝛼) and 𝐹1(𝜌, 𝛼) the solution of (17) reads 

𝐹−(𝜌, 𝛼) + 𝐹1(𝜌, 𝛼) + 𝑒
𝑖𝛼𝑙𝐹+(𝜌, 𝛼) = −𝐹̇1(𝑎, 𝛼)

𝐽0(𝐾𝜌)

𝐾(𝛼)𝐽1(𝐾𝑎)
                                      (20) 

where 𝐾(𝛼) = √𝑘2 − 𝛼2 is the square root function defined by 𝐾(0) = 𝑘. The dot (∙) over F 

represents the derivative with respect to ρ and 𝐽𝑛 stands for the Bessel function of integer order. 

In the region a < ρ < b for z  (0, l), finite Fourier transform of the Helmholtz equation becomes 

 

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) + 𝐾2(𝛼)]𝐺1(𝜌, 𝛼)                                                                                                                                      

= [
𝜕

𝜕𝑧
𝑢2(𝜌, 0) − 𝑖𝛼𝑢2(𝜌, 0)] − 𝑒

𝑖𝛼𝑙 [
𝜕

𝜕𝑧
𝑢2(𝜌, 𝑙) − 𝑖𝛼𝑢2(𝜌, 𝑙)]                                       (21) 

where 𝐺1(𝜌, 𝛼) is an entire function on the -plane which is defined as 

𝐺1(𝜌, 𝛼) = ∫𝑢2(𝜌, 𝑧)𝑒
𝑖𝛼𝑧𝑑𝑧

𝑙

0

                                                 (22) 

The solution of (21) in terms of  𝑓(𝑡) =
𝜕

𝜕𝑧
𝑢2(𝑡, 0), 𝑔(𝑡) = 𝑢2(𝑡, 0), 𝑝(𝑡) =

𝜕

𝜕𝑧
𝑢2(𝑡, 𝑙), 𝑞(𝑡) = 𝑢2(𝑡, 𝑙) 

𝐺1(𝜌, 𝛼) = −
1

𝐾(𝛼)𝐿(𝛼)
{𝐹̇1(𝑎, 𝛼)[𝐽0(𝐾𝜌)𝑌(𝑏, 𝛼) − 𝑌0(𝐾𝜌)𝐽(𝑏, 𝛼)] 

    −∫{[𝑓(𝑡) − 𝑖𝛼𝑔(𝑡)] − 𝑒𝑖𝛼𝑙[𝑝(𝑡) − 𝑖𝛼𝑞(𝑡)]}ℋ(𝑡, 𝜌, 𝛼) 𝑡 𝑑𝑡

𝑏

𝑎

}         (23) 

where ℋ(𝑡, 𝜌, 𝛼) is the corresponding Green’s function found to be, 
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ℋ(𝑡, 𝜌, 𝛼)

=
𝜋

2
𝐾(𝛼) {

[𝐽0(𝐾𝑡)𝑌1(𝐾𝑎) − 𝑌0(𝐾𝑡)𝐽1(𝐾𝑎)][𝐽0(𝐾𝜌)𝑌(𝑏, 𝛼) − 𝑌0(𝐾𝜌)𝐽(𝑏, 𝛼)]       , 𝑎 ≤ 𝑡 ≤ 𝜌
[𝐽0(𝐾𝜌)𝑌1(𝐾𝑎) − 𝑌0(𝐾𝜌)𝐽1(𝐾𝑎)][𝐽0(𝐾𝑡)𝑌(𝑏, 𝛼) − 𝑌0(𝐾𝑡)𝐽(𝑏, 𝛼)]       , 𝜌 ≤ 𝑡 ≤ 𝑏

      (24) 

and 𝐽(𝑏, 𝛼), 𝑌(𝑏, 𝛼), 𝐿(𝛼) are defined as 
𝐿(𝛼) = [𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]                                      (25) 

𝐽(𝑏, 𝛼) = 𝑖𝑘𝜂2𝐽0(𝐾𝑏) + 𝐾𝐽1(𝐾𝑏)                                                        (26) 
𝑌(𝑏, 𝛼) = 𝑖𝑘𝜂2𝑌0(𝐾𝑏) + 𝐾𝑌1(𝐾𝑏)                                                       (27) 

Since the left side of (23) is an entire function so do the right side has to be an entire function too. 

This can be carried out by equating the residual contribution at the zeros of 𝐾(𝛼)𝐿(𝛼) to zero by 

the following relation 

𝐹̇1(𝑎, ±𝛼𝑚) =
𝜋

2

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝐽(𝑏, 𝛼)
{∫{[𝑓(𝑡) ∓ 𝑖𝛼𝑚𝑔(𝑡)] − 𝑒

±𝑖𝛼𝑚𝑙[𝑝(𝑡) ∓ 𝑖𝛼𝑚𝑞(𝑡)]}

𝑏

𝑎

 

× [𝐽0(𝐾𝑡)𝑌(𝑏, 𝛼) − 𝑌0(𝐾𝑡)𝐽(𝑏, 𝛼)] 𝑡𝑑𝑡}    𝑚 = 1,2, . .     (28) 
where 𝐾(±𝛼𝑚) = 𝐾𝑚  (𝑚 = 1,2… ) are the zeros of the function 𝐾(𝛼)𝐿(𝛼). 
Now using continuity relations (15) and (16) we obtain the following equation valid in the strip 

𝐼𝑚(−𝑘) < 𝐼𝑚(𝛼) < 𝐼𝑚(𝑘), 
 
2

𝑎
𝐹̇1(𝑎, 𝛼)

𝑉(𝛼)

𝐾2(𝛼)
+ 𝐹−(𝑎, 𝛼) + 𝑒

𝑖𝛼𝑙𝐹+(𝑎, 𝛼) = 

1

𝑎𝐾(𝛼)𝐿(𝛼)
∫{[𝑓(𝑡) − 𝑖𝛼𝑔(𝑡)] − 𝑒𝑖𝛼𝑙[𝑝(𝑡) − 𝑖𝛼𝑞(𝑡)]}[𝐽0(𝐾𝑡)𝑌(𝑏, 𝛼) − 𝑌0(𝐾𝑡)𝐽(𝑏, 𝛼)] 𝑡𝑑𝑡

𝑏

𝑎

  

−
1 − 𝑒𝑖(𝑘+𝛼)𝑙

𝑖(𝑘 + 𝛼)
        (29) 

Here, 𝑉(𝛼) stands for the kernel function defined and factorized as 

  

𝑉(𝛼) =
𝐽(𝑏, 𝛼)

𝜋𝐽1(𝐾𝑎)[𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]
= 𝑉+(𝛼)𝑉−(𝛼)                       (30) 

 

where 𝑉+(𝛼) and 𝑉−(𝛼) stand for the split functions regular and free of zeros in the upper and 

lower half-planes of the complex -plane, respectively. Their explicit expressions can be found 

in [12]. 

 

2.2. Series Expansion and Wiener-Hopf Equation 

 

The unknown field 𝑢3(𝜌, 𝑧) and 𝑢4(𝜌, 𝑧) can be expressed is terms of the waveguide modes as 

𝑢3(𝜌, 𝑧) = ∑𝑎𝑛𝑐𝑜𝑠[𝛽𝑛(𝑧 + 𝑙1)][𝐽0(𝛾𝑛𝜌) − 𝑅𝑛𝑌0(𝛾𝑛𝜌)]

∞

𝑛=1

                         (31) 

𝑢4(𝜌, 𝑧) = ∑𝑏𝑛𝑐𝑜𝑠[𝛽𝑛(𝑧 − 𝑙2)][𝐽0(𝛾𝑛𝜌) − 𝑅𝑛𝑌0(𝛾𝑛𝜌)]

∞

𝑛=1

                         (32) 

with  

𝑅𝑛 =
𝑖𝑘𝜂1𝐽0(𝛾𝑛𝑎) − 𝛾𝑛𝐽1(𝛾𝑛𝑎)

𝑖𝑘𝜂1𝑌0(𝛾𝑛𝑎) − 𝛾𝑛𝑌1(𝛾𝑛𝑎)
=
𝑖𝑘𝜂2𝐽0(𝛾𝑛𝑏) + 𝛾𝑛𝐽1(𝛾𝑛𝑏)

𝑖𝑘𝜂2𝑌0(𝛾𝑛𝑏) + 𝛾𝑛𝑌1(𝛾𝑛𝑏)
                     (33) 
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where 𝜂1,2 are admittance values related with impedances as 𝑍𝑖 =
1

𝜂𝑖
 (𝑖 = 1,2) and 𝛾𝑛’s are the 

roots of the equation 
𝑖𝑘𝜂1𝐽0(𝛾𝑛𝑎) − 𝛾𝑛𝐽1(𝛾𝑛𝑎)

𝑖𝑘𝜂1𝑌0(𝛾𝑛𝑎) − 𝛾𝑛𝑌1(𝛾𝑛𝑎)
−
𝑖𝑘𝜂2𝐽0(𝛾𝑛𝑏) + 𝛾𝑛𝐽1(𝛾𝑛𝑏)

𝑖𝑘𝜂2𝑌0(𝛾𝑛𝑏) + 𝛾𝑛𝑌1(𝛾𝑛𝑏)
= 0                     (34) 

while 𝛽𝑛’s are defined as 

𝛽𝑛 = √𝑘
2 − 𝛾𝑛

2  ,    𝑛 = 1,2, …                                               (35) 

Taking into account continuity relations (11), (12), (13) and (14) together with the expressions 

(31) and (32), we are able to define 𝑓(𝑡), 𝑔(𝑡), 𝑝(𝑡) and 𝑞(𝑡) in terms of the unknown coefficients 

𝑎𝑛, 𝑏𝑛.  

𝑓(𝑡) = −∑𝑎𝑛𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1)[𝐽0(𝛾𝑛𝑡) − 𝑅𝑛𝑌0(𝛾𝑛𝑡)]

∞

𝑛=1

                         (36) 

𝑔(𝑡) = ∑𝑎𝑛𝑐𝑜𝑠(𝛽𝑛𝑙1)[𝐽0(𝛾𝑛𝑡) − 𝑅𝑛𝑌0(𝛾𝑛𝑡)]

∞

𝑛=1

                                  (37) 

and 

𝑝(𝑡) = −∑𝑏𝑛𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)][𝐽0(𝛾𝑛𝑡) − 𝑅𝑛𝑌0(𝛾𝑛𝑡)]

∞

𝑛=1

                (38) 

𝑞(𝑡) = ∑𝑏𝑛𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)][𝐽0(𝛾𝑛𝑡) − 𝑅𝑛𝑌0(𝛾𝑛𝑡)]

∞

𝑛=1

                         (39) 

 

Substituting the series expansions (36), (37), (38) and (39) into (28) and (29) we obtain 

 

𝐹̇1(𝑎, ±𝛼𝑚) = −𝑖𝑘𝜂1 {∑𝑎𝑛[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) ± 𝑖𝛼𝑚𝑐𝑜𝑠(𝛽𝑛𝑙1)]∆𝑚𝑛

∞

𝑛=1

 

−𝑒±𝑖𝛼𝑚𝑙∑𝑏𝑛[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] ± 𝑖𝛼𝑚𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]∆𝑚𝑛

∞

𝑛=1

}     𝑚 = 1,2, . .     (40) 

where 

∆𝑚𝑛=
[𝐽0(𝛾𝑛𝑎) − 𝑅𝑛𝑌0(𝛾𝑛𝑎)]

𝛼𝑚
2 − 𝛽𝑛

2                                                     (41) 

 

and the following equation is Modified Wiener-Hopf equation to be solved by using nalytical 

properties of (+) and (-) functions,  

2

𝑎
𝐹̇1(𝑎, 𝛼)

𝑉(𝛼)

𝐾2(𝛼)
+ 𝐹−(𝑎, 𝛼) + 𝑒

𝑖𝛼𝑙𝐹+(𝑎, 𝛼) =
𝑊(𝛼)

𝐾(𝛼)𝐿(𝛼)
∑{𝑎𝑛[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) + 𝑖𝛼𝑐𝑜𝑠(𝛽𝑛𝑙1)]

∞

𝑛=1

 

−𝑒𝑖𝛼𝑙𝑏𝑛[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] + 𝑖𝛼𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]}
[𝐽0(𝛾𝑛𝑎) − 𝑅𝑛𝑌0(𝛾𝑛𝑎)]

𝛼2 − 𝛽𝑛
2  −

1 − 𝑒𝑖(𝑘+𝛼)𝑙

𝑖(𝑘 + 𝛼)
        (42) 

where  
𝑊(𝛼) = [𝐽(𝑎, 𝛼)𝑌(𝑏, 𝛼) − 𝑌(𝑎, 𝛼)𝐽(𝑏, 𝛼)]                                      (43) 
𝐽(𝑎, 𝛼) = 𝑖𝑘𝜂1𝐽0(𝐾𝑎) − 𝐾𝐽1(𝐾𝑎)                                                        (44) 
𝑌(𝑎, 𝛼) = 𝑖𝑘𝜂1𝑌0(𝐾𝑎) − 𝐾𝑌1(𝐾𝑎)                                                       (45) 
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2.3. Solution of Wiener-Hopf Equation and Determination of Unknown Coefficients 

 

Following a similar procedure defined in [9], we first write (42) in the following form 

 
2

𝑎
𝐹̇1(𝑎, 𝛼)

𝑉(𝛼)

𝐾2(𝛼)
+ 𝑒𝑖𝛼𝑙𝑀(𝛼) + 𝑁(𝛼) = 0                                            (46) 

𝑀(𝛼) and 𝑁(𝛼) are defined respectively as, 

 

𝑀(𝛼) = 𝐹+(𝑎, 𝛼) 

+
𝑊(𝛼)

𝐾(𝛼)𝐿(𝛼)
∑ 𝑏𝑛[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] + 𝑖𝛼𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]

[𝐽0(𝛾𝑛𝑎) − 𝑅𝑛𝑌0(𝛾𝑛𝑎)]

𝛼2 − 𝛽𝑛
2 −

𝑒𝑖𝑘𝑙

𝑖(𝑘 + 𝛼)

∞

𝑛=1

  (47) 

 

𝑁(𝛼) = 𝐹−(𝑎, 𝛼) 

−
𝑊(𝛼)

𝐾(𝛼)𝐿(𝛼)
∑ 𝑎𝑛[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) + 𝑖𝛼𝑐𝑜𝑠(𝛽𝑛𝑙1)]

[𝐽0(𝛾𝑛𝑎) − 𝑅𝑛𝑌0(𝛾𝑛𝑎)]

𝛼2 − 𝛽𝑛
2

∞

𝑛=1

+
1

𝑖(𝑘 + 𝛼)
  (48) 

and then applying factorization and decomposition procedures we arrive at the solution for 𝑀(𝛼) 
and 𝑁(𝛼). 

(𝑘 + 𝛼)

𝑉+(𝛼)
𝑀(𝛼) = 𝜋∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 + 𝛼)
𝑁(−𝛾𝑛)

∞

𝑛=1

 

+
2

𝜋𝑎
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 − 𝛼)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] + 𝑖𝛼𝑚𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

𝑏𝑛

∞

𝑛=1

  (49) 

 

 

(𝑘 − 𝛼)

𝑉−(𝛼)
𝑁(𝛼) = 𝜋∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 − 𝛼)
𝑀(𝛾𝑛)

∞

𝑛=1

−
2𝑘

𝑖𝑉+(𝑘)(𝑘 + 𝛼)
 

−
2

𝜋𝑎
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 + 𝛼)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) − 𝑖𝛼𝑚𝑐𝑜𝑠(𝛽𝑛𝑙1)]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

𝑎𝑛

∞

𝑛=1

  (50) 

From (46), (49) and (50) the solution of W-H equation is found to be 

 

2

𝑎
𝐹̇1(𝑎, 𝛼) = −𝜋

(𝑘 + 𝛼)

𝑉+(𝛼)
∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 − 𝛼)
𝑀(𝛾𝑛)

∞

𝑛=1

 

+
2

𝜋𝑎

(𝑘 + 𝛼)

𝑉+(𝛼)
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 + 𝛼)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) − 𝑖𝛼𝑚𝑐𝑜𝑠(𝛽𝑛𝑙1)]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

∞

𝑛=1

𝑎𝑛 − 

2

𝜋𝑎
𝑒𝑖𝛼𝑙

(𝑘 − 𝛼)

𝑉−(𝛼)
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 − 𝛼)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] + 𝑖𝛼𝑚𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

𝑏𝑛

∞

𝑛=1

 

−𝜋𝑒𝑖𝛼𝑙
(𝑘 − 𝛼)

𝑉−(𝛼)
∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 + 𝛼)
𝑁(−𝛾𝑛)

∞

𝑛=1

−
2𝑘

𝑖𝑉+(𝑘)𝑉+(𝛼)
        (51) 

The solution involves unknown coefficients 𝑎𝑛, 𝑏𝑛, 𝑀(𝛾𝑛), 𝑁(−𝛾𝑛). To determine these 

coefficents we construct a system of linear algebraic equations by substituting 𝛼 = ±𝛼𝑟 in (51), 
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𝛼 = 𝛾𝑟 in (49) and 𝛼 = −𝛾𝑟 in (50) respectively. Using the relation in (40) we achieve the 

following infinite system of linear equations 

𝑖𝑘𝜂1∑[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) + 𝑖𝛼𝑟𝑐𝑜𝑠(𝛽𝑛𝑙1)]∆𝑟𝑛𝑎𝑛

∞

𝑛=1

= −
𝜋𝑎

2

(𝑘 + 𝛼𝑟)

𝑉+(𝛼𝑟)
∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 − 𝛼𝑟)
𝑀(𝛾𝑛)

∞

𝑛=1

 

+
1

𝜋

(𝑘 + 𝛼𝑟)

𝑉+(𝛼𝑟)
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 + 𝛼𝑟)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) − 𝑖𝛼𝑚𝑐𝑜𝑠(𝛽𝑛𝑙1)]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

∞

𝑛=1

𝑎𝑛 

+
𝑘𝑎

𝑖𝑉+(𝑘)𝑉+(𝛼𝑟)
        (52) 

−𝑖𝑘𝜂1∑[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] − 𝑖𝛼𝑟𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]∆𝑟𝑛𝑏𝑛

∞

𝑛=1

=
𝜋𝑎

2

(𝑘 + 𝛼𝑟)

𝑉+(𝛼𝑟)
∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 − 𝛼𝑟)
𝑁(−𝛾𝑛)

∞

𝑛=1

+ 

1

𝜋

(𝑘 + 𝛼𝑟)

𝑉+(𝛼𝑟)
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 + 𝛼𝑟)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] + 𝑖𝛼𝑚𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

𝑏𝑛

∞

𝑛=1

 

        (53) 
 

(𝑘 + 𝛾𝑟)

𝑉+(𝛾𝑟)
𝑀(𝛾𝑟) = 𝜋∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 + 𝛾𝑟)
𝑁(−𝛾𝑛)

∞

𝑛=1

 

+
2

𝜋𝑎
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 − 𝛾𝑟)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛[𝛽𝑛(𝑙 − 𝑙2)] + 𝑖𝛼𝑚𝑐𝑜𝑠[𝛽𝑛(𝑙 − 𝑙2)]]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

𝑏𝑛

∞

𝑛=1

  (54) 

 

(𝑘 + 𝛾𝑟)

𝑉+(𝛾𝑟)
𝑁(−𝛾𝑟) = 𝜋∑

𝐽1
2(𝛿𝑛𝑎/𝑏)𝑌(𝑏, 𝛾𝑛)(𝑘 − 𝛾𝑛)𝑉+(𝛾𝑛)𝑒

𝑖𝛾𝑛𝑙

𝐽′(𝑏, 𝛾𝑛)(𝛾𝑛 + 𝛾𝑟)
𝑀(𝛾𝑛)

∞

𝑛=1

−
2𝑘

𝑖𝑉+(𝑘)(𝑘 − 𝛾𝑟)
 

−
2

𝜋𝑎
∑ ∑

𝐽(𝑏, 𝛼𝑚)

𝐾𝑚𝐽1(𝐾𝑚𝑎)

𝑖𝑘𝜂1(𝑘 + 𝛼𝑚)

𝑉+(𝛼𝑚)(𝛼𝑚 − 𝛾𝑟)

∞

𝑚=1

[𝛽𝑛𝑠𝑖𝑛(𝛽𝑛𝑙1) − 𝑖𝛼𝑚𝑐𝑜𝑠(𝛽𝑛𝑙1)]∆𝑚𝑛
[𝐾𝐽1(𝐾𝑎)𝑌(𝑏, 𝛼) − 𝐾𝑌1(𝐾𝑎)𝐽(𝑏, 𝛼)]′𝛼=𝛼𝑚

𝑎𝑛

∞

𝑛=1

  (55) 

 

We solve linear algebraic system in (52), (53), (54) and (55) numerically by truncating the 

infinite series at some number N. 

 

2.4. Reflection and Transmission Coefficients 

 

The scattered field 𝑢1(𝜌, 𝑧) can be obtained by taking the inverse Fourier transform of 𝐹(𝜌, 𝛼). 
From the definition (18) and solution (20) we can write, 

𝑢1(𝜌, 𝑧) = −
1

2𝜋
∫ 𝐹̇1(𝑎, 𝛼)

𝐽0(𝐾𝜌)

𝐾(𝛼)𝐽1(𝐾𝑎)
𝑒−𝑖𝛼𝑧𝑑𝛼

∞

−∞

                        (56) 

The evaluation of this integral for z < 0 and z > l will give us the reflected wave and the 

transmitted wave, respectively. The reflection coefficient R of the fundamental mode is defined 
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as the complex coefficient of the term exp(-ikz) and is computed from the contribution of the first 

pole at 𝛼 = 𝑘. The result is 

𝑅 =
𝑖

𝑘𝑎
𝐹̇1(𝑎, 𝑘)                                                                      (57) 

Similarly, the transmission coefficient T of the fundamental mode which is defined as to be the 

complex coefficient of exp(ikz) is calculated from the contribution at the pole 𝛼 = −𝑘 as, 

𝑇 =
𝑖

𝑘𝑎
𝐹̇1(𝑎, −𝑘)                                                                    (58) 

3. Results and Discussion 

 

In order to show the effects of the parameters as extended inlet/outlet lengths 𝑙1, 𝑙2 and the 

surface admittances 𝜂1,2 on the sound transmission, some numerical results showing the variation 

of transmission coefficient T are presented. In all numerical calculations the solution of the 

infinite system of algebraic equations is obtained by truncating the infinite series at some number 

N. Only imaginary values of surface admittances s.t. 𝜂1,2 = 𝑖𝑋1,2  , 𝑋 ∈ ℝ were taken. In all 

graphs Transmission Loss is found by the following definition: 𝑇𝐿 = −20 log10|𝑇| .  
 

 
Figure 2. Transmission Loss(dB) versus frequency(Hz) 

for 𝜂1 = 𝜂2 = 𝑖0.1, 𝑙1 = 0, 𝑙2 = 4.0, 𝑙 = 28.23 (cm) 

 
Figure 3. Transmission Loss(dB) versus frequency(Hz) 

for 𝜂1 = 𝜂2 = 𝑖0.1, 𝑙1 = 8.0, 𝑙2 = 4.0, 𝑙 = 28.23 (cm) 
 

In Fig. 2, Fig. 3 and Fig. 4 it is observed that the lining admittances affect the resonance peaks. 

Number of domes does not change, but some attenuation in the peaks are seen for lined case. 

Hard cases in all figures are in agreement with Figure 3, Figure 4 and Figure 6 of [7]. 

 

Conclusions  

 

This paper examines the transmission of sound waves in an expansion chamber with lined 

extended inlet/outlet and lined lateral walls. Problem is solved by a hybrid method of formulation 

consisting of expressing the fields in extended inlet/outlet regions in terms of waveguide modes 

and using the Fourier transform elsewhere is adopted. The mixed boundary value problem is 

reduced to a Modified Wiener-Hopf equation whose solution involves infinitely many expansion 

coefficients satisfying a system of linear algebraic equations. These equations are solved 

numerically and the effects of problem parameters on transmitted field are displayed graphically.  
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Figure 4. Transmission Loss(dB) versus frequency(Hz) for 𝜂1 = 𝜂2 = 𝑖0.1, 𝑙1 = 12.0, 𝑙2 = 0, 𝑙 = 28.23 (cm). 

 

References  
 

[1] J. W. Miles, "The analysis of plane discontinuities in cylindrical tubes", The Journal of the 

Acoustical Society of America 17, 259-271, 1946. 

[2] M.L. Munjal, "Acoustics of Ducts and Mufflers", Wiley-Interscience, New York, 1987. 

[3] J. Kergomard and A. Garcia, "Simple discontinuities in acoustic waveguides at low 

frequencies: Critical analysis and formulae" 114, 465-479, 1987. 

[4] A. Selamet and P.M. Radavich, "The effect of length on the acoustic attenuation performance 

of concentric expansion chambers: an analytical, computational, and experimental investigation", 

Journal of Sound and Vibration 201, 407-426, 1997. 

[5] M. Abom, "Derivation of four-pole parameters including higher order mode effects for 

expansion chamber mufflers with extended inlet and outlet" Journal of Sound and Vibration 137, 

403-418,1990. 

[6] K.S. Peat, "The acoustical impedance at the junction of an extended inlet or outlet duct", 

Journal of Sound and Vibration 9, 101-110, 1991 

[7] A. Selamet and Z.L. Ji, "Acoustic attenuation performance of circular expansion chambers 

with extended inlet/outlet", Journal of Sound and Vibration 223, 197-212, 1999. 

[8] A. D. Rawlins, "Radiation of sound from an unflanged rigid cylindrical duct with an 

acoustically absorbing internal surface", Proc. R. Soc. London A-361, 65-91, 1978. 

[9] A. Demir and A. Buyukaksoy, "Transmission of sound waves in a cylindrical duct with an 

acoustically lined muffler", Int. Journal of Engineering Science 41, 2411-2427, 2003. 

[10] A. Demir, “Sound Transmission in an Extended Tube Resonator”, 4th International 

Symposium on Innovative Technologies in Engineering and Science ISITES2016, 2016. 

[11] A. Demir, “Sound Transmission in a Duct with Sudden Area Expansion, Extended Inlet, and 

Lined Walls in Overlapping Region”, Advances in Acoustics and Vibration, 1-8, 2016. 

[12] A. D. Rawlins, "A bifurcated circular waveguide problem", IMA J.A. Math 54, 59-81, 1995. 


